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Section 5Section 5
Spatial SimulationSpatial Simulation
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SmartSmartSamplingSampling GeostatisticalGeostatistical
SimulationSimulation

• A probability-based technique (Monte Carlo
process) on spatially correlated distributions

• Sacrifices the local best estimate for the
reproduction of global statistics and features

• Simulation process can create any number of
equally probable realizations (maps) all of which
honor the available information

• Simulation allows for evaluation of joint
uncertainty (accuracy) at multiple locations

Recall the earlier example of walking across a site and collecting 20
samples along the transect.  You could fit smooth lines through the
points, which is like the kriging estimate …
OR
make multiple unique pictures from simulation, all of which honor the
sample data.
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•Accurately evaluating the best estimate at each location
(kriging) produces an overly smoothed map. The kriged
map displays a very smooth transition from red to blue to
green with no sharp breaks. Many natural properties are
not represented that way.

•By honoring the raw data values, histogram and
variograms, simulation can retain the actual variability
and better reproduce the global statistics and features.

• In kriging we’re just trying to accurately evaluate each
point.  With simulation, we’re trying to accurately model
the global histogram and create images that reproduce
larger scale features.

•The best map that we get out of kriging is probably not going to look like reality.
Simulation provides a way to draw randomly from that best map to reproduce patterns
or features that we believe exist in that data.

Kriged Map
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SmartSmartSamplingSampling Why Simulate?Why Simulate?

• Simulation provides a more realistic picture of
natural complexity

• Simulation can provide an idea of “best,” “most
likely” and “worst” cases for a given problem

• Simulation is a basis for Monte Carlo risk analysis
where a full distribution of results is necessary

• Simulation reproduces the observed level of
variability or heterogeneity at a site
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SmartSmartSamplingSampling Transfer FunctionTransfer Function
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Multiple
Realizations of
Porosity and
Permeability

Ground Water Flow and
Transport Model

There is a water supply
well in the vicinity of a
leaking landfill.  What will
the concentration of a
given contaminant be at
that well in 50 years?

Simulation is used extensively in the petroleum, groundwater and nuclear
waste industry.  If your problem is soil only, simulation stops after generation
of the contaminant distribution realizations. Design of the remediation scheme
will proceed from an analysis of the variability and spatial distribution.

If your problem involves hydrology, simulation can be used to create multiple
realizations of a property which can be input to a transfer function like a
ground water flow and transport model, generating a probabilistic metric.
For the stated problem, porosity and permeability are spatially variable and
uncertain.  We have data from a few wells, and can build a variogram; we can
generate maps, use them as input, and get a probabilistic metric for
concentrations 50 years from now.  Then it is up to the regulators and
stakeholders to decide if the probability of high contaminants in the well is
acceptably small.  In the oil industry, where they want to know how much oil
that can recover, the realization would be plugged into an oil reservoir model
and produce a distribution of recoverable oil.
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SmartSmartSamplingSampling GeneralGeneral
Types of SimulationTypes of Simulation

ParametricParametric:: requires transform of the data to a parametric
space, simulation in that space and then back-
transform to raw data space.

ExampleExample: gaussian simulation using the normal-score
transform

Advantage:Advantage: only requires one-variogram model
Disadvantage:Disadvantage: does not reproduce variogram at extremes of

the distribution

Non-ParametricNon-Parametric:: requires discretization of data into classes and a
variogram model at each threshold or class.
Example:Example: indicator simulation of geologic facies (sand,

silt, clay)
Advantage:Advantage: Reproduces each variogram at each

class/threshold
Disadvantage:Disadvantage: requires variogram modeling for each

class/threshold

Parametric:  means there is some analytical expression that will describe the distribution.  For a
histogram, we want to say that the concentrations are normally distributed and may be fully defined by
two parameters; the mean and variance.

The high and the low ends of the distribution won’t show the spatial continuity that might actually
exist.  Though not critical for soil contamination problems, this can be a serious problem for
groundwater problems.
Non-parametric:  For non-parametric simulation, establish threshold points, designating a value of 1
if the point is less than or equal to the threshold and 0 if otherwise. Determine the percentage of data
that meets each threshold, then perform the transformation and create the variogram for each threshold.

Often, the plot of the discrete data doesn’t follow a
Gaussian distribution very well.  The transform takes the
raw distribution and maps it onto a Gaussian distribution
with a mean of zero and a variance of 1 - a standard-
normal distribution. From the data point at the 10th

percentile of the actual distribution, we can draw a line to
the 10th percentile of the Gaussian distribution where the
mean and variance are known.  This transforms the
misshapen raw data distribution into a well-behaved, well
understood distribution.  After generating the simulation,
we transform back to the raw data distribution; the
mapping goes both ways.
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SmartSmartSamplingSampling
Turing Bands:Turing Bands: late 1960’s, extra work to

condition to data
LU Decomposition:LU Decomposition: good for small domains with few

conditioning data
Sequential:Sequential: currently popular, conditioning

to data by construction
Probability Field:Probability Field: apply spatially correlated

random numbers to set cdf field
Simulated Annealing:Simulated Annealing: perturb field of values until they

match a defined metric.

Simulation AlgorithmsSimulation Algorithms

In geostatistics we typically use the sequential simulation algorithm because it
conditions every simulation to the available data as it goes, and never lets the
data values change.
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SmartSmartSamplingSampling Sequential SimulationSequential Simulation

• Map the conditioning data onto a grid
• Randomly visit all other grid nodes
• Use kriging system to create a local cdf based on

surrounding data for each node
• Draw a random value from the cdf to get the

simulated value at that location
• Consider each simulated point as a conditioning

value for future cdf construction
• Continue until all nodes have a simulated value
• Reinitialize random number generator and begin

next realization

     indicates an actual sample value.

We want to fill in the entire grid through sequential
simulation.



8

5-8Mound Accelerated Site Technology Deployment

SmartSmartSamplingSampling
SequentialSequential

Simulation ExampleSimulation Example

• Use the kriging system to create a local cdf based
on the surrounding data points of the first node.

• Develop a cdf for this location.
• Draw a random number between 0 and 1, and

assign the value for that probability to the node.
• For the remainder of this realization, the newly

defined node is treated as a sample point.

Local cdfs reflect proximity to data locations

Well definedWell defined Poorly definedPoorly defined    On top of / right next to value   On top of / right next to value
Close to dataClose to data Far from dataFar from data    On top of data point   On top of data point

The kriging system gives us the best estimate, which is the mean at that location
if we’re using parametric simulation; and the variance is from the kriging
variance.

At that first point, the distribution is fairly broad because we’re far away from
any data point.  At the second point it will be a tight distribution, heavily
weighted by the two points close to it.  Without a broad range of possible
values, if we draw .3 or .7 probability, the value at the second unknown point
will be fairly close to the values of the close data points.

• Randomly jump to another node and repeat the
process, this time including the node just calculated
as one of the surrounding data points.

• Keep jumping around randomly until the whole
grid is filled (never visit a node more than once).

• To make the next realization, use a different seed
and follow a different path to fill the grid.
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SmartSmartSamplingSampling CDF ConstructionCDF Construction

GaussianGaussian:: normal-score transform allows the
kriging estimate and kriging variance to
define the local cdf.

Indicator:Indicator: construct the cdf through indicator
kriging at each threshold zk.

The expected value of the cdf at any threshold is
estimated by the weighted linear combination of
surrounding indicator data.

Smart Sampling uses the Gaussian parametric because it allows modeling of
many different action levels without having to redo the variogram.
Transform the raw data into a Gaussian distribution with mean = 0 and
variance = 1.  The Gaussian model provides a weighted average of the
surrounding points

0

For Indicator Simulation modeling, we construct the cdf as
we go for each data point.  Instead of coming up with a
different Gaussian distribution at each point and drawing
randomly from that, we’re constructing the distribution at
every point.

This way takes longer, because we have to solve the
kriging equation 5 times before doing the random draw.
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SmartSmartSamplingSampling Gaussian Gaussian SimulationSimulation
ExampleExample
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When compared to kriging map (right), the
realization (above) displays much more
variability.
Another way to look at the relationship:
If you took an infinite number of realizations
(maps like this) and stacked them all up on each
other, took the average value across the stack of
maps at each pixel, and mapped that average
value, you’d get the kriged map.

SEAN: Suggestion was to show histogram of data
vs. histogram of simulation, perhaps both cdfs as
well. If we no longer have this realization (HA!),
maybe we could use something you’ve already
done on Rocky or other site?  What site/data is
this kriged map from? (original is from GSA
section 4 slide 23)
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SmartSmartSamplingSampling Indicator SimulationIndicator Simulation
ExampleExample

The threshold was applied to the data and then simulated the values that were
above and below the data.
In each realization the data plotted is binary -- 0 or 1 relative to threshold.

Black is below threshold, white above.
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SmartSmartSamplingSampling
KrigingKriging:: smoothing effect of interpolation will produce:

1) A longer range variogram in the ouput than the input
model

2) Less variability in the output field than the input data
(distribution gets squeezed)

Simulation:Simulation: attempts to reproduce the input
histogram and variogram (the input
univariate and bivariate data
distributions, respectively) within the
limits of “ergodic fluctuations”.

Kriging vsKriging vs. Simulation. Simulation

The variogram of the kriged data shows more correlation than the variogram
of the raw data. This increased range is a product of kriging’s smoothing
effect. The kriged data will have a tighter cdf.

Every single one of the realizations will not point-for-point match the raw
variogram exactly, but on average across all of the realizations, they will
match the distributions.
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SmartSmartSamplingSampling ComparingComparing
UnivariateUnivariate Statistics Statistics

Histogram
of raw data

Histogram of
kriged data

Histogram of
Realization 1
(simulation)

Histogram of
Realization 2
(simulation)

These graphs show that the mean was reproduced both by kriging and by
simulation.  The median is better reproduced by the realizations.

The distribution of kriged values is much smoother, centering the data on the
mean.  The input values are represented but none of the many additional points
are at the extremes.
The histograms of values from two realizations created by simulation do a
much better job at reproducing the raw data. A realization will not reproduce
the raw data exactly, but an average of 100 or so realizations should be very
close to the statistics of the raw data.

• For the standard deviation, the spread of the distribution, kriging only
shows about half of the variability of the raw data while the
simulations reproduce it pretty well.

• The realizations show possible highs and lows that were not captured
in the sampling.

Kriging reduces variance but retains the mean of the input data.  As an
interpolator, it does not produce values outside the minimum and maximum of
the sample data.
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SmartSmartSamplingSampling
Parameter

Raw Data 
(n=214)

Kriged Map 
(n=5329)

Realization 
1 (n=5329)

Realization 
2 (n=5329)

Mean 7.53 7.49 7.41 7.52

Median 6.79 7.34 6.70 6.81

Standard 
Deviation

1.81 0.86 1.75 1.80

Minimum 5.20 5.46 3.18 3.10

Maximum 13.24 13.13 14.93 14.88

10th 
Percentile

5.80 6.46 5.80 5.80

90th 
Percentile

10.47 8.75 10.39 10.47

ComparingComparing
UnivariateUnivariate Statistics Statistics

In this example, 214 raw data points were used to create a kriged map and two
realizations. The mean was reproduced in all of them; the median is better
reproduced by the realizations.
The standard deviation (the spread of the distribution) looks better with
simulation; the kriged data showing only about half of the variability of the
raw data.  Ergodic fluctuations can be seen.
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SmartSmartSamplingSampling Notes onNotes on Univariate Univariate
DistributionsDistributions

••KrigingKriging reduces variance but
retains the mean of the input
data

••KrigingKriging, as an interpolator,
does not produce values
outside minimum and maximum
of sample data

••SimulationSimulation can produce values
above and below the maximum
and minimum sample data
because it draws from a fully
defined cdf [0,1] at each
location.
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Talk about relationship of two techniques to the minimum and maximum
samples.
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SmartSmartSamplingSampling
•Generally, both the absolute minimum and
maximum aren’t randomly included in a limited
data set

•It is possible to simulate values outside the
sample range by defining the data distribution
beyond the sample value extremes

•add graphs / charts from GSLIB Ver 2 p.134-138
•Use a power function or hyperbolic model to do
this extrapolation in GSLIB software

•Extrapolation can also be truncated by setting a
minimum and maximum possible value.

ExtendingExtending
Sample CDFSample CDF

You can use the variability within the sample data to help determine how far
outside the measured maximum and minimum to extend the cdf.

Also, use whatever knowledge of the distribution or the property you have. For
example, for porosity the values must be between 0 and 1.

Air pollution modeling is a classic example for truncating the extrapolation;
you want to define particulate size - restrict it so that there are no negatives
and to prevent extending the tail all the way to include boulders.
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SmartSmartSamplingSampling Ergodic Ergodic FluctuationsFluctuations

•• Ergodic Ergodic fluctuationfluctuation is defined as the difference
between the input model and the statistics of a
realization.

• Input models are generally based on data from a
limited sample size

• The underlying model is said to be ergodic in the
paramenter α if the realization statistics tend toward α
as the size of the field increases

As pointed out with the table on comparing
univariate statistics, each simulation is not
going to exactly reproduce the mean, median,
and variance, but they  will be close.
We don’t want to reproduce the input data
exactly because these models are based on data
from a limited sample size.  Just because we
took 100 samples, why should we require all
realizations to tie into those parameters?  If we
had taken 200 samples, those parameters may
have been different.

Parameter
Raw Data 
(n=214)

Realization 1 
(n=5329)

Realization 2 
(n=5329)

Mean 7.53 7.41 7.52

Median 6.79 6.70 6.81
Standard 
Deviation

1.81 1.75 1.80

Minimum 5.20 3.18 3.10

Maximum 13.24 14.93 14.88
10th 

Percentile
5.80 5.80 5.80

90th 
Percentile

10.47 10.39 10.47

If it were possible to sample on an infinite field, taking more and more samples, the
sample statistics would tend towards the actual population’s statistics.
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SmartSmartSamplingSampling
Ergodic Ergodic BehaviorBehavior

ExampleExample

The practical manifestation of ergodic fluctuation can be shown through the
following process.

• Create a number of unconditional realizations.   A Gaussian distribution will
have exactly 68.3% of the values between ±1 standard deviation of the
mean.

• Create models which have different variogram lengths relative to the domain
size; basically the number of ranges that fit within the domain.

• A very small range, relative to the domain size, might fit 100 or 300
variograms and will reproduce the theoretical statistics fairly well.  That
holds true until the domain size becomes less than 10 correlation lengths,
then the sample statistics are no longer represented.

• Ergodic assumption: Domain size must be ≥ 8-10 correlation lengths
• In practice, we often have variogram ranges close to the domain size or even

half of the domain size.  This is mitigated considerably by having
conditioning data (samples) which can constrain the simulations across the
site.

• Domain size usually derives from the site, a specific size area to look at.
• Correlation lengths come from the sample data, and depend on the

deposition mode.
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SmartSmartSamplingSampling

…  but we have a simulation
domain that is only 50m x
50m.
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We calculate this
variogram with a
range of 100m...
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If there are no conditioning data,
any simulated point will be heavily
weighted by the first point
because the variogram range
extends over the entire domain.

Ergodic Ergodic AssumptionAssumption

Domain size must be ≥ 8-10 correlation lengths

If the first point is a high point, the whole area
will get filled in with high values, it’s not
going to reproduce the sample statistics.  If a
very low value is simulated first, the whole
area will be low values.
If we make the domain size 1000x1000, the
variogram fits in the domain size fairly easily
and will reproduce the statistics.
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SmartSmartSamplingSampling ComparingComparing
BivariateBivariate Statistics Statistics

You can check your output by comparing bivariate statistics.  After modeling a
variogram from the sample data (solid black line) and creating 100
realizations, recalculate the variogram in the same direction with the same
search parameters for each one of those realizations.

• The gray band shows the total variance across the 100 realizations.
• The error bars show the 95% confidence levels for every variogram lag.
• The black squares show the mean of the hundred variograms.

The realizations captured the actual input variogram at pretty much every lag.
Although still within the (?), the realizations underpredict the mean.

Chris would like to see histograms for this slide.  Sean would too, but does not
have software to do this easily.


